96 research outputs found

    Combating the effects of climatic change on forests by mitigation strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions.</p> <p>Results</p> <p>We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES). We used the scenarios A1B (rapid and successful economic development) and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development). Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management.</p> <p>Conclusions</p> <p>The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.</p

    Satellite Data-Based Phenological Evaluation of the Nationwide Reforestation of South Korea

    Get PDF
    Through the past 60 years, forests, now of various age classes, have been established in the southern part of the Korean Peninsula through nationwide efforts to reestablish forests since the Korean War (1950-53), during which more than 65% of the nation&apos;s forest was destroyed. Careful evaluation of long-term changes in vegetation growth after reforestation is one of the essential steps to ensuring sustainable forest management. This study investigated nationwide variations in vegetation phenology using satellite-based growing season estimates for 1982-2008. The start of the growing season calculated from the normalized difference vegetation index (NDVI) agrees reasonably with the ground-observed first flowering date both temporally (correlation coefficient, r = 0.54) and spatially (r = 0.64) at the 95% confidence level. Over the entire 27-year period, South Korea, on average, experienced a lengthening of the growing season of 4.5 days decade(-1), perhaps due to recent global warming. The lengthening of the growing season is attributed mostly to delays in the end of the growing season. The retrieved nationwide growing season data were used to compare the spatial variations in forest biomass carbon density with the time-averaged growing season length for 61 forests. Relatively higher forest biomass carbon density was observed over the regions having a longer growing season, especially for the regions dominated by young (&lt;30 year) forests. These results imply that a lengthening of the growing season related to the ongoing global warming may have positive impacts on carbon sequestration, an important aspect of large-scale forest management for sustainable development.open2

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    Models for supporting forest management in a changing environment

    Get PDF
    Forests are experiencing an environment that changes much faster than during the past several hundred years. In addition, the abiotic factors determining forest dynamics vary depending on its location. Forest modeling thus faces the new challenge of supporting forest management in the context of environmental change. This review focuses on three types of models that are used in forest management: empirical (EM), process-based (PBM) and hybrid models. Recent approaches may lead to the applicability of empirical models under changing environmental conditions, such as (i) the dynamic state-space approach, or (ii) the development of productivity-environment relationships. Twenty-five process-based models in use in Europe were analyzed in terms of their structure, inputs and outputs having in mind a forest management perspective. Two paths for hybrid modeling were distinguished: (i) coupling of EMs and PBMs by developing signal-transfer environment-productivity functions; (ii) hybrid models with causal structure including both empirical and mechanistic components. Several gaps of knowledge were identified for the three types of models reviewed. The strengths and weaknesses of the three model types differ and all are likely to remain in use. There is a trade-off between how little data the models need for calibration and simulation purposes, and the variety of input-output relationships that they can quantify. PBMs are the most versatile, with a wide range of environmental conditions and output variables they can account for. However, PBMs require more data making them less applicable whenever data for calibration are scarce. EMs, on the other hand, are easier to run as they require much less prior information, but the aggregated representation of environmental effects makes them less reliable in the context of environmental changes. The different disadvantages of PBMs and EMs suggest that hybrid models may be a good compromise, but a more extensive testing of these models in practice is required

    Mixed Norway spruce (<em>Picea abies</em> [L.] Karst) and European beech (<em>Fagus sylvatica</em> [L.]) stands under drought: From reaction pattern to mechanism.

    No full text
    Key message We review causes of synergies in mixed-species stands, develop guiding hypotheses for revealing their mechanisms and present a rainfall exclusion experiment along with a transect (KROOF) for exploringdrought effects. While monocultures have dominated forest research and practice in the past, in face of growing resource scarcity and climate change, mixed-species stands are on the advance. Long-term observations show that mixed-species stands frequently over-yield monocultures, and they further suggest that the over-yielding is often higher on poor than on fertile sites and in low-growth than in high-growth years. However, the underlying causes have not yet been clarified. We start with a review of, among others, hydraulic redistribution, complementary eco-physiological traits, and ectomycorrhizal networks as possible causes behind the observed productivity gains in mixed-species stands. Then, we develop guiding hypotheses for further exploration of synergies in mixed-species stands. Finally, we introduce into the concept and model approach of the rainfall exclusion experiment for examining the role of water supply in mixed versus pure forest stands of spruce and beech. At the Kranzberg site, six plots are equipped with water retention roofs, which only close during rain events. The remaining six plots serve as non-roofed control. Together with the rainfall exclusion experiment, an ecological gradient with five sites extending through SE-Germany forms the &quot;Kranzberg Roof Experiment&quot; (in short KROOF). Kranzberg Forest is a part of this gradient from moist to dry conditions, with each site providing mixed and pure associations each of spruce and beech. The ecophysiological approach will be complemented by tree ring analysis and modelling of productivity of the tree associations under intense drought
    corecore